
Adaptive Bitrate

Technology

Peter Chave

Cisco

chavep@cisco.com

mailto:chavep@cisco.com

Agenda

2

• How did we get to ABR?

• Today’s delivery model

• Differences in ABR technologies

• A strategy to handle divergence

• The CDN challenge

Why HTTP?

• Web download services have traditionally been less expensive than
media streaming services offered by CDNs and hosting providers.

• HTTP-based media delivery has no issues traversing
routers/NAT/firewalls because firewalls and routers know to pass HTTP
downloads through port 80

• HTTP media delivery doesn't require special proxies or caches. A
media file is just like any other file to a Web cache

• It's much easier and cheaper to move HTTP data to the edge of the
network, closer to users through HTTP caches

• Key point: adapt video to Web rather than change the Web to
allow video

Source: VRT medialab

HTTP Progressive Download

HTTP Progressive Download

• Prevalent form of Web-based media delivery for Video
Share Sites.

• ‘Ordinary’ File Download from HTTP Web Server

• ‘Progressive’ = Playback begins while download is in
progress Byte Range Request Supported HTTP 1.1+

Video File

Browser

Cache

HTTP Get Min Playbk

Buffer

Playback

File Download Completes

http://www.youtube.com/

• Downside – Real-time viewing often suffers from poor
quality unless network/bandwidth conditions are sufficient.

• Upside - media file is resident in browser cache.
Subsequent playout is smooth.

Progressive Download – Behavior

…. Buffering…. …. Buffering….

HTTP Progressive Download

• A hybrid content delivery method which acts like traditional streaming
but is in fact based on HTTP progressive download

HTTP Adaptive Bit Rate (ABR) Streaming

HTTP
PDL

Streaming

HTTP
Streaming

Traditional Streaming Vs HTTP ABR Streaming

HTTP ABR Streaming
 Advantages

• Fast start-up and seek times because start-up/seeking can be initiated on

the lowest bit rate before moving to a higher bit rate

• No buffering, no disconnects, no playback stutter (as long as the user meets

the minimum bit rate requirement)

• Allows client to adapt to the content, rather than requiring content providers

to guess which bit rates are most likely to be accessible to their audience

• Seamless bit rate switching based on network conditions and CPU

capabilities. A generally consistent, smooth playback experience

• Facilitates ‘any device, anywhere, anytime’ paradigm. Major step towards

mobility

• Changing legacy SP service model. New business, services, revenue

opportunities.

Fragments

Manifest
Client manages

- Manifest database

- HTTP transport

- TCP connection(s)

Client monitors

- Playout buffer

- Local resources (CPU, memory, screen, etc.)

- Network (TCP) connections and bandwidth

Client performs adaptation

HTTP ABR Streaming

Client has a prominent role

HTTP ABR Streaming

A Client Application

Request Manifest

00:00 00:02 00:04 00:06 00:08

1280x720 @ 3.0 Mbps

320x240 @ 300 Kbps

1A

1B

Quickstart Fragment Requests

00:00 00:02 00:04 00:06 00:08

1280x720 @ 3.0 Mbps

320x240 @ 300 Kbps

Bit rate &

frame rate

heuristics

3B

3A

2

Adapting Bit Rate in Real-Time

Bit rate &

frame rate

heuristics

00

02

04

06
08

00:00 00:02 00:04 00:06 00:08

1280x720 @ 3.0 Mbps

320x240 @ 300 Kbps

4A

4B

4C

Today’s Over-the-Top Adaptive Streaming Delivery

Production Preparation and Staging Distribution Consumption

News

Gathering

Sport Events

Premium

Content

Studio

Multi-bitrate

Encoding

Encapsulation

Protection Origin Servers

VoD
Content &
Manifests

Live
Content &
Manifests

CDN

•Service Providers have little control and visibility into OTT services

•Content Providers have little control of the delivery of their content

Video consumption is exploding around the world

• In 2015, Video traffic will be 3

times larger than it is today

• And mobile traffic will be 12

times what it is today

HSS (Microsoft) HLS (Apple) HDS (Adobe)

Transport Protocol HTTP HTTP HTTP

Fragment Size (typical) 2 seconds 10 seconds Variable

#TCP connections 1 or 2 1 Variable

Content Files
on Origin Server

#profiles #profiles x 720/Hr #profiles (VOD)
#profiles x frag duration/Hr (Live)

Codec Support VC-1, H.264,WMA H.264 H.264

Wire/Xport Format MP4 fragments MP2TS fragments MP4 fragments

Content File Format
 on Origin Server

.ismv
Fragmented mp4

.ts
Segmented TS

.f4f, .fmf
Fragmented mp4

Byte Range Mechanism No No Yes

Std HTTP Origin Server No Yes No

Encryption/DRM Windows DRM
PlayReady

AES-128 Adobe Access

Client Silveright 2+
OSMF (OpenSource)

iPhone OS 3.0+
Quicktime X

Flash Player 10.1 with ZERI
extensions

Manifest file .ismc (.ism/Mfest or .isml/Mfest) .m3u8 .fmf

Origin server Helper integrated with IIS server HTTP server HTTP server with Helper module

HTTP ABR – Format Comparison

No clear common ground apart from H.264/AAC

HSS HLS HDS

Multi-Language
Audio

• Single audio track per language
• Track has language descriptor
• URL fragment request contains
descriptor

• HLS supports multiple audio tracks,
but each segment contains all audio
tracks (pre-iOS5)

• iOS5 now allows for separable audio
streams, TBD when non iOS devices
will support (Roku, etc.)

• Change result of Cisco working with
Apple on requirements – Apple has
tended to be very NA focused

• RTMP has no support for multiple
audio tracks/IDs
• HDS supports multiple audio
tracks, but each segment contains
video and all audio tracks
• Cisco applying pressure on Adobe
on both of these issues

Metadata
Processing

• Data Tracks (Name, Language,
Sub-type)
• Sparse (has Parent Track)
• Non-Sparse (always present)

• Timed metadata introduced earlier this
year
• Private TS stream
• ES=ID3 tag payload

• Cue points
• (Name, Multiple Parameters)
• Each parameter is (tag,value) pair

Captions/Subtitl
es

• Source converted to TTML –
natively supported by client
• Different approach highly desired to
support bitmap-based subtitles
(DVB)

• 608 user data on AVC ES for Closed
Captioning
• No subtitle support
• Apple unlikely to add support soon

• No formal support
• Client specific customer
implementations (BBC)

Ad Splicing** • SCTE-35 like metadata in sparse
track
• Client based reaction to metadata
• Dual timelines to track parent and
child (ad) streams

• Cloud based manifest manipulation

• Client unaware of ad splice, additional

metadata can be used to control

trickmodes, etc.

• Scale, cacheability implications of

supporting highly targeted – manifest

file management

• Client based reaction to some form

of metadata

• Little effort to standardize this data

** Divergent views across providers on cloud-based only vs client-based only –based splicing, as well as

combination of the two – implications on different ecosystems

Multi-Language Audio, Metadata Processing

Still no convergence (actually worse)

Multiple Bitrates
Target Quality (N)

So how do we address the divergence?

Look at a generic ABR Content Flow

Large video files or
virtual files and manifests

Multiple Bitrates
Target encapsulation formats
(NxM)

Multiple Bitrates
Target encapsulation formats
with DRM

Single Stream
Highest Bitrate/Quality Player-specific

fragments/segments

ABR Encoder

Appliance

3rd Party Origin/

Web Server (IIS, etc.) CDN

Encap-
sulate

Trans./Co
nd.

Helper
(Frag.)

Origin/St
ore

Source Client Distribution Encrypt

CDN Edge

CDN Root
Pre-segmented TS (HLS)

Contiguous Fragmented MP4 (Smooth)

IIS

Apache, IIS

Common or Distributed Platform

CDN ABR Encoder Virtual Origin

Encoding, Encapsulation, & Origin on a single platform

Encap-
sulate

Trans./Co
nd.

Helper
(Frag.)

Source Encrypt
Origin/St

ore
Client Distribution

Transcode Encapsulate Encrypt
Origin/St

ore

Helper
(Frag.)

CDN Edge

CDN Root

Virtual Origin

• Separates the Encapsulation, Encryption, Storage, and Helper

functions into flexible processes that can be instantiated in

different locations of the architecture

• Provides a unified architecture for VOD, Linear, and Timeshifting

(CloudDVR). Supports multiscreen deployments (Legacy STB &

ABR clients)

• Proximity Routing, Load Balancing and Resiliency

• Supports External Origins as well as direct ingest from

Transcoders

• Multi-vendor solution (Microsoft, Apple, Adobe).

• For protocols with Helper functions (IIS & FMS), implements

Helper functionality directly in VOS, eliminating the need for a

layer of servers in the Data Center.

• Removes a point of failure, increases ability to scale,

deployment approaching the edge of the network

• Adapts to evolving standards like DECE UV and DASH

What is Just-in-Time Processing (JITP)?

• Single flavor in storage (Intermediary ABR-conditioned Format)

• Result of VoD Transcode or Linear Recording

• Assets Index to assist JIT

• On-demand, JITP produces Target-specific Manifest

• Complete VoD Manifest if source asset complete

• Linear Manifest starting at beginning of assert if still recording

• Client makes requests against provided manifest

• Fragments: Random seeks against known fragments

• Updated Manifest in case of manifest updates (HLS)

• JITP continues to update Manifest if required

• JITP only produces fragments on-demand that are requested

JIT Processing Flow

• Stored Indexed Intermediary Format

• Dynamic Manifest, Encapsulation and DRM based on requests

• Storage savings (only store common, ABR-independent format)

• Network savings (only deliver requested fragments, not full ABR set)

Indexer Recorder
JIT

Processor
Formatter

Storage

Live/VoD in

ATS Format

Desired

Format
Deliver requested

format only

Manifest/Segment

Request from Client

Storage Savings
Store common format only

HTTP ABR – CDN Challenges

• ABR = Adaptive Bit Rate

• Unicast HTTP-based delivery

(and hence TCP congestion control)

• Client-driven adaptation to available BW

and CPU

• Large number of (relatively) small objects

• File Storage vs. Wire Formats

• Transaction Load, File System Load

• Challenges to Reporting and Analytics

• No Inherent Server Side Session State

• Variability in client delivery

implementations

• Lack of standard Content Access

Protection methods
• Prevent deep URL linking (including ABR

fragments)

• Prevent certain types of DoS attacks (e.g.

Origin Server overload, cache poisoning”)

3-5 TCP Conn.

2/3 sec. per trans.

3 trans. per 2 sec.

2 TCP Conn.

2 second/trans

(separate A + V)

2 trans. per 2 sec.

1 TCP Conn.

~5-10 second/trans

1 trans. per 5-10 sec.

1 TCP Conn.

1 transaction

Progressive

Download

Session

HTTP Live

Streaming

Session

Move Streaming

Session

Smooth

Streaming

Session

1 File

Files = N Profiles X Segments +

M3U8 Manifests

Storage Format Wire Format

Files = N Profiles X Segments +

Manifest

Files = N Profiles + Manifests

The Challenges with Distributing ABR Objects

Movie.mp4 Old World
Progressive Download

 Short fragment sizes translate to very high request TPS

 TCP connections can be short-lived (client and network conditions)

 Different standard fragment sizes (HLS v. Smooth) mean object sizes are different
for each Delivery Service. Object handling can be configured on a per-DS basis

Obj

Length(sec)
Client

Request TPS
TPS for

2000 clients
Objects/Ho

ur/Asset
Obj/Hr 200

channels

Smooth 2 0.500 1,000 1800 360,000

HLS 10 0.100 200 360 72,000

PDL 3600 0.000 0.56 1 200

3000

kbps
1500

kbps
500

kbps

Smooth 0.75 0.38 0.13

HLS 3.8 1.9 0.6

PDL 1,350 675 225

Transaction Rates
Object Size (MB)

Frag1-1

Frag2-1

Frag3-1

FragN-1

Frag1-2

Frag2-2

Frag3-2

FragN-2

Frag1-3

Frag2-3

Frag3-3

FragN-3

Frag1-Z

Frag2-Z

Frag3-Z

FragN-

Z

New World
ABR Delivery 3600 fragments x 7 profiles

= 25,000 possible objects

CDN Features to address the ABR challenge

• Optimized TCP connection handling
• Scaling to support the large # of connections for ABR

• Optimized HTTP transaction handling
• Scaling to support the high transaction rate of ABR. CDNs designed for ordinary

HTTP transaction loads will not meet the high transactional demands of ABR

• Request Bundling
• For live streaming, aggregates multiple cache-fill requests for same content into a

single request from next cache-tier or Origin Server

• Small Object Cache Throughput Optimizations
• Small objects written to memory, delayed write to disk

• Large objects continue to be cached on disk

• Customized object size caching behavior per Delivery Service

• Content Access Protection
• URL signing

• Access authentication

• Live ABR and Client Request Optimizations
• Request Bundling – Multiple near-time requests result in single requests upstream

• Range Request Caching (HLS clients, Progressive DL clients)

• Service Visibility
• Reporting and Analytics optimizations for ABR

• Streamer performance metrics associated with delivery transactions for overall
system behavior views

• Exposure of service metrics and transaction logs for 3rd party monitoring/reporting
systems.

Thank you.

