BogoToBogo
  • Home
  • About
  • Big Data
  • Machine Learning
  • AngularJS
  • Python
  • C++
  • go
  • DevOps
  • Kubernetes
  • Algorithms
  • More...
    • Qt 5
    • Linux
    • FFmpeg
    • Matlab
    • Django 1.8
    • Ruby On Rails
    • HTML5 & CSS

Memory-mapped I/O vs port-mapped I/O - 2020





Bookmark and Share





bogotobogo.com site search:




Memory-mapped IO vs Port-mapped IO

Microprocessors normally use two methods to connect external devices: memory mapped or port mapped I/O. However, as far as the peripheral is concerned, both methods are really identical.

Memory mapped I/O is mapped into the same address space as program memory and/or user memory, and is accessed in the same way.

Port mapped I/O uses a separate, dedicated address space and is accessed via a dedicated set of microprocessor instructions.

The difference between the two schemes occurs within the microprocessor. Intel has, for the most part, used the port mapped scheme for their microprocessors and Motorola has used the memory mapped scheme.

As 16-bit processors have become obsolete and replaced with 32-bit and 64-bit in general use, reserving ranges of memory address space for I/O is less of a problem, as the memory address space of the processor is usually much larger than the required space for all memory and I/O devices in a system.

Therefore, it has become more frequently practical to take advantage of the benefits of memory-mapped I/O. However, even with address space being no longer a major concern, neither I/O mapping method is universally superior to the other, and there will be cases where using port-mapped I/O is still preferable.


Memory-mapped IO (MMIO)

Memory_mapped_io.png

Picture source : IO Devices

I/O devices are mapped into the system memory map along with RAM and ROM. To access a hardware device, simply read or write to those 'special' addresses using the normal memory access instructions.

The advantage to this method is that every instruction which can access memory can be used to manipulate an I/O device.

The disadvantage to this method is that the entire address bus must be fully decoded for every device. For example, a machine with a 32-bit address bus would require logic gates to resolve the state of all 32 address lines to properly decode the specific address of any device. This increases the cost of adding hardware to the machine.


Port-mapped IO (PMIO or Isolated IO)

Port_Mapped_io.png

Picture source : IO Devices

I/O devices are mapped into a separate address space. This is usually accomplished by having a different set of signal lines to indicate a memory access versus a port access. The address lines are usually shared between the two address spaces, but less of them are used for accessing ports. An example of this is the standard PC which uses 16 bits of port address space, but 32 bits of memory address space.

The advantage to this system is that less logic is needed to decode a discrete address and therefore less cost to add hardware devices to a machine. On the older PC compatible machines, only 10 bits of address space were decoded for I/O ports and so there were only 1024 unique port locations; modern PC's decode all 16 address lines. To read or write from a hardware device, special port I/O instructions are used.

From a software perspective, this is a slight disadvantage because more instructions are required to accomplish the same task. For instance, if we wanted to test one bit on a memory mapped port, there is a single instruction to test a bit in memory, but for ports we must read the data into a register, then test the bit.


Comparison - Memory-mapped vs port-mapped

Memory-mapped IO Port-mapped IO
Same address bus to address memory and I/O devices Different address spaces for memory and I/O devices
Access to the I/O devices using regular instructions Uses a special class of CPU instructions to access I/O devices
Most widely used I/O method x86 Intel microprocessors - IN and OUT instructions



Resource Monitor

We can check the reserved memory address space from the Resource Monitor via our desktop's Task Manager.


ResourceMonitor_ReservedMemory.png





Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization

YouTubeMy YouTube channel

Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong







Embedded systems programming



Embedded Systems Programming I - Introduction

Embedded Systems Programming II - gcc ARM Toolchain ans Simple Code on Ubuntu and Fedora

Embedded Systems Programming III - Eclipse CDT Plugin for gcc ARM Toolchain

Memory-mapped I/O vs Port-mapped I/O

Interrupt & Interrupt Latency

Little Endian/Big Endian & TCP Sockets

Bit Manipulation

Linux Processes and Signals

Linux Drivers 1




Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong








C++ Tutorials

C++ Home

Algorithms & Data Structures in C++ ...

Application (UI) - using Windows Forms (Visual Studio 2013/2012)

auto_ptr

Binary Tree Example Code

Blackjack with Qt

Boost - shared_ptr, weak_ptr, mpl, lambda, etc.

Boost.Asio (Socket Programming - Asynchronous TCP/IP)...

Classes and Structs

Constructor

C++11(C++0x): rvalue references, move constructor, and lambda, etc.

C++ API Testing

C++ Keywords - const, volatile, etc.

Debugging Crash & Memory Leak

Design Patterns in C++ ...

Dynamic Cast Operator

Eclipse CDT / JNI (Java Native Interface) / MinGW

Embedded Systems Programming I - Introduction

Embedded Systems Programming II - gcc ARM Toolchain and Simple Code on Ubuntu and Fedora

Embedded Systems Programming III - Eclipse CDT Plugin for gcc ARM Toolchain

Exceptions

Friend Functions and Friend Classes

fstream: input & output

Function Overloading

Functors (Function Objects) I - Introduction

Functors (Function Objects) II - Converting function to functor

Functors (Function Objects) - General



Git and GitHub Express...

GTest (Google Unit Test) with Visual Studio 2012

Inheritance & Virtual Inheritance (multiple inheritance)

Libraries - Static, Shared (Dynamic)

Linked List Basics

Linked List Examples

make & CMake

make (gnu)

Memory Allocation

Multi-Threaded Programming - Terminology - Semaphore, Mutex, Priority Inversion etc.

Multi-Threaded Programming II - Native Thread for Win32 (A)

Multi-Threaded Programming II - Native Thread for Win32 (B)

Multi-Threaded Programming II - Native Thread for Win32 (C)

Multi-Threaded Programming II - C++ Thread for Win32

Multi-Threaded Programming III - C/C++ Class Thread for Pthreads

MultiThreading/Parallel Programming - IPC

Multi-Threaded Programming with C++11 Part A (start, join(), detach(), and ownership)

Multi-Threaded Programming with C++11 Part B (Sharing Data - mutex, and race conditions, and deadlock)

Multithread Debugging

Object Returning

Object Slicing and Virtual Table

OpenCV with C++

Operator Overloading I

Operator Overloading II - self assignment

Pass by Value vs. Pass by Reference

Pointers

Pointers II - void pointers & arrays

Pointers III - pointer to function & multi-dimensional arrays

Preprocessor - Macro

Private Inheritance

Python & C++ with SIP

(Pseudo)-random numbers in C++

References for Built-in Types

Socket - Server & Client

Socket - Server & Client 2

Socket - Server & Client 3

Socket - Server & Client with Qt (Asynchronous / Multithreading / ThreadPool etc.)

Stack Unwinding

Standard Template Library (STL) I - Vector & List

Standard Template Library (STL) II - Maps

Standard Template Library (STL) II - unordered_map

Standard Template Library (STL) II - Sets

Standard Template Library (STL) III - Iterators

Standard Template Library (STL) IV - Algorithms

Standard Template Library (STL) V - Function Objects

Static Variables and Static Class Members

String

String II - sstream etc.

Taste of Assembly

Templates

Template Specialization

Template Specialization - Traits

Template Implementation & Compiler (.h or .cpp?)

The this Pointer

Type Cast Operators

Upcasting and Downcasting

Virtual Destructor & boost::shared_ptr

Virtual Functions



Programming Questions and Solutions ↓

Strings and Arrays

Linked List

Recursion

Bit Manipulation

Small Programs (string, memory functions etc.)

Math & Probability

Multithreading

140 Questions by Google



Qt 5 EXPRESS...

Win32 DLL ...

Articles On C++

What's new in C++11...

C++11 Threads EXPRESS...

Go Tutorial

OpenCV...








Contact

BogoToBogo
contactus@bogotobogo.com

Follow Bogotobogo

About Us

contactus@bogotobogo.com

YouTubeMy YouTube channel
Pacific Ave, San Francisco, CA 94115

Pacific Ave, San Francisco, CA 94115

Copyright © 2024, bogotobogo
Design: Web Master