BogoToBogo
  • Home
  • About
  • Big Data
  • Machine Learning
  • AngularJS
  • Python
  • C++
  • go
  • DevOps
  • Kubernetes
  • Algorithms
  • More...
    • Qt 5
    • Linux
    • FFmpeg
    • Matlab
    • Django 1.8
    • Ruby On Rails
    • HTML5 & CSS

Image Thresholding and Segmentation

OpenCV_Logo.png




Bookmark and Share





bogotobogo.com site search:

Thresholding

Thresholding is the simplest method of image segmentation. It is a non-linear operation that converts a gray-scale image into a binary image where the two levels are assigned to pixels that are below or above the specified threshold value. In other words, if pixel value is greater than a threshold value, it is assigned one value (may be white), else it is assigned another value (may be black). In OpenCV, we use cv2.threshold() function:

cv2.threshold(src, thresh, maxval, type[, dst])

This function applies fixed-level thresholding to a single-channel array. The function is typically used to get a bi-level (binary) image out of a grayscale image ( compare() could be also used for this purpose) or for removing a noise, that is, filtering out pixels with too small or too large values. There are several types of thresholding supported by the function.

The function returns the computed threshold value and thresholded image.



bogotobogo.com site search:
  1. src - input array (single-channel, 8-bit or 32-bit floating point). This is the source image, which should be a grayscale image.
  2. thresh - threshold value, and it is used to classify the pixel values.
  3. maxval - maximum value to use with the THRESH_BINARY and THRESH_BINARY_INV thresholding types. It represents the value to be given if pixel value is more than (sometimes less than) the threshold value.
  4. type - thresholding type.(see threshold for details).
    1. cv2.THRESH_BINARY
    2. cv2.THRESH_BINARY_INVY
    3. cv2.THRESH_TRUNCY
    4. cv2.THRESH_TOZEROY
    5. cv2.THRESH_TOZERO_INVY

    6. thrshold_params.png

      Picture source: threshold

  5. dst - output array of the same size and type as src.





Thresholding - code and output

The code looks like this:

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('gradient.png',0)
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)

titles = ['Original Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5]

for i in xrange(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])

plt.show()


Output:


gradient_outputs.png

circle_gradient.png

Original images are available :
gradient.png and circle.png





Adaptive Thresholding

Using a global threshold value may not be good choicewhere image has different lighting conditions in different areas. So, in that case, we may want to use adaptive thresholding. It uses the algorithm that calculates the threshold for a small regions of the image so that we can get different thresholds for different regions of the same image and it gives us better results for images with varying light conditions.

cv.AdaptiveThreshold(src, dst, maxValue, adaptive_method=CV_ADAPTIVE_THRESH_MEAN_C, thresholdType=CV_THRESH_BINARY, blockSize=3, param1=5) 

where:

  1. src - Source 8-bit single-channel image.
  2. dst - Destination image of the same size and the same type as src.
  3. maxValue - Non-zero value assigned to the pixels for which the condition is satisfied.
  4. adaptiveMethod - Adaptive thresholding algorithm to use, ADAPTIVE_THRESH_MEAN_C (hreshold value is the mean of neighbourhood area) or ADAPTIVE_THRESH_GAUSSIAN_C (threshold value is the weighted sum of neighbourhood values where weights are a gaussian window). adaptiveMethod decides how thresholding value is calculated.
  5. thresholdType - Thresholding type that must be either THRESH_BINARY or THRESH_BINARY_INV .
  6. blockSize - size of a pixel neighborhood that is used to calculate a threshold value for the pixel: 3, 5, 7, and so on.
  7. C - Constant subtracted from the mean or weighted mean. Normally, it is positive but may be zero or negative as well. It is just a constant which is subtracted from the mean or weighted mean calculated.

Here is the code for adaptive thresholding:

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('bw.png',0)
img = cv2.medianBlur(img,5)

ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
            cv2.THRESH_BINARY,11,2)
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
            cv2.THRESH_BINARY,11,2)

titles = ['Original Image', 'Global Thresholding (v = 127)',
            'Adaptive Mean Thresholding', 'Adaptive Gaussian Thresholding']
images = [img, th1, th2, th3]

for i in xrange(4):
    plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show()


OpenCV_Adaptive_Thresholding.png

Original images : bw.png



Separating Bimodal Distributions with Otsu Threshold

Otsu binarization automatically calculates a threshold value from image histogram for a bimodal image.

It uses cv2.threshold() function with an extra flag, cv2.THRESH_OTSU. For threshold value, simply pass zero. Then the algorithm finds the optimal threshold value and returns us as the second output, retVal. If Otsu thresholding is not used, the retVal remains same as the threshold value we used.

import cv2
import numpy as np
from matplotlib import pyplot as plt

img = cv2.imread('EinStein.jpg',0)

# global thresholding
ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)

# Otsu's thresholding
ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

# Otsu's thresholding after Gaussian filtering
blur = cv2.GaussianBlur(img,(5,5),0)
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)

# plot all the images and their histograms
images = [img, 0, th1,
          img, 0, th2,
          blur, 0, th3]
titles = ['Original Noisy Image','Histogram','Global Thresholding (v=127)',
          'Original Noisy Image','Histogram',"Otsu's Thresholding",
          'Gaussian filtered Image','Histogram',"Otsu's Thresholding"]

for i in xrange(3):
    plt.subplot(3,3,i*3+1),plt.imshow(images[i*3],'gray')
    plt.title(titles[i*3]), plt.xticks([]), plt.yticks([])
    plt.subplot(3,3,i*3+2),plt.hist(images[i*3].ravel(),256)
    plt.title(titles[i*3+1]), plt.xticks([]), plt.yticks([])
    plt.subplot(3,3,i*3+3),plt.imshow(images[i*3+2],'gray')
    plt.title(titles[i*3+2]), plt.xticks([]), plt.yticks([])
plt.show()

Otsu_Thresholding_EinStein.png

OpenCV_Otsu_Thresholding2.png

OpenCV_Otsu_Thresholding3.png

Original images :
EinStein.jpg
bimodal.jpg
bimodal_hsv_noise.png






more


OpenCV 3 Tutorial

image & video processing



Installing on Ubuntu 13

Mat(rix) object (Image Container)

Creating Mat objects

The core : Image - load, convert, and save

Smoothing Filters A - Average, Gaussian

Smoothing Filters B - Median, Bilateral





OpenCV 3 image and video processing with Python



OpenCV 3 with Python

Image - OpenCV BGR : Matplotlib RGB

Basic image operations - pixel access

iPython - Signal Processing with NumPy

Signal Processing with NumPy I - FFT and DFT for sine, square waves, unitpulse, and random signal

Signal Processing with NumPy II - Image Fourier Transform : FFT & DFT

Inverse Fourier Transform of an Image with low pass filter: cv2.idft()

Image Histogram

Video Capture and Switching colorspaces - RGB / HSV

Adaptive Thresholding - Otsu's clustering-based image thresholding

Edge Detection - Sobel and Laplacian Kernels

Canny Edge Detection

Hough Transform - Circles

Watershed Algorithm : Marker-based Segmentation I

Watershed Algorithm : Marker-based Segmentation II

Image noise reduction : Non-local Means denoising algorithm

Image object detection : Face detection using Haar Cascade Classifiers

Image segmentation - Foreground extraction Grabcut algorithm based on graph cuts

Image Reconstruction - Inpainting (Interpolation) - Fast Marching Methods

Video : Mean shift object tracking

Machine Learning : Clustering - K-Means clustering I

Machine Learning : Clustering - K-Means clustering II

Machine Learning : Classification - k-nearest neighbors (k-NN) algorithm








Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization

YouTubeMy YouTube channel

Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong








OpenCV 3 image and video processing with Python



OpenCV 3 with Python

Image - OpenCV BGR : Matplotlib RGB

Basic image operations - pixel access

iPython - Signal Processing with NumPy

Signal Processing with NumPy I - FFT and DFT for sine, square waves, unitpulse, and random signal

Signal Processing with NumPy II - Image Fourier Transform : FFT & DFT

Inverse Fourier Transform of an Image with low pass filter: cv2.idft()

Image Histogram

Video Capture and Switching colorspaces - RGB / HSV

Adaptive Thresholding - Otsu's clustering-based image thresholding

Edge Detection - Sobel and Laplacian Kernels

Canny Edge Detection

Hough Transform - Circles

Watershed Algorithm : Marker-based Segmentation I

Watershed Algorithm : Marker-based Segmentation II

Image noise reduction : Non-local Means denoising algorithm

Image object detection : Face detection using Haar Cascade Classifiers

Image segmentation - Foreground extraction Grabcut algorithm based on graph cuts

Image Reconstruction - Inpainting (Interpolation) - Fast Marching Methods

Video : Mean shift object tracking

Machine Learning : Clustering - K-Means clustering I

Machine Learning : Clustering - K-Means clustering II

Machine Learning : Classification - k-nearest neighbors (k-NN) algorithm

Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong






Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Selenium WebDriver

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...









Contact

BogoToBogo
contactus@bogotobogo.com

Follow Bogotobogo

About Us

contactus@bogotobogo.com

YouTubeMy YouTube channel
Pacific Ave, San Francisco, CA 94115

Pacific Ave, San Francisco, CA 94115

Copyright © 2024, bogotobogo
Design: Web Master