BogoToBogo
  • Home
  • About
  • Big Data
  • Machine Learning
  • AngularJS
  • Python
  • C++
  • go
  • DevOps
  • Kubernetes
  • Algorithms
  • More...
    • Qt 5
    • Linux
    • FFmpeg
    • Matlab
    • Django 1.8
    • Ruby On Rails
    • HTML5 & CSS

Dijkstra's shortest path algorithm

python_logo




Bookmark and Share





bogotobogo.com site search:

Introduction

graph_diagram.png

We want to find the path with the smallest total weight among the possible paths we can take.





Dijkstra's shortest path algorithm

Dijkstra's algorithm is an iterative algorithm that provides us with the shortest path from one particular starting node (a in our case) to all other nodes in the graph.

To keep track of the total cost from the start node to each destination we will make use of the distance instance variable in the Vertex class. The distance instance variable will contain the current total weight of the smallest weight path from the start to the vertex in question. The algorithm iterates once for every vertex in the graph; however, the order that we iterate over the vertices is controlled by a priority queue (actually, in the code, I used heapq).

The value that is used to determine the order of the objects in the priority queue is distance. When a vertex is first created distance is set to a very large number.

When the algorithm finishes the distances are set correctly as are the predecessor (previous in the code) links for each vertex in the graph.




Code

In the code, we create two classes: Graph, which holds the master list of vertices, and Vertex, which represents each vertex in the graph (see Graph data structure).

The source file is Dijkstra_shortest_path.py.

The function dijkstra() calculates the shortest path. The shortest() function constructs the shortest path starting from the target ('e') using predecessors.

import sys

class Vertex:
    def __init__(self, node):
        self.id = node
        self.adjacent = {}
        # Set distance to infinity for all nodes
        self.distance = sys.maxint
        # Mark all nodes unvisited        
        self.visited = False  
        # Predecessor
        self.previous = None

    def add_neighbor(self, neighbor, weight=0):
        self.adjacent[neighbor] = weight

    def get_connections(self):
        return self.adjacent.keys()  

    def get_id(self):
        return self.id

    def get_weight(self, neighbor):
        return self.adjacent[neighbor]

    def set_distance(self, dist):
        self.distance = dist

    def get_distance(self):
        return self.distance

    def set_previous(self, prev):
        self.previous = prev

    def set_visited(self):
        self.visited = True

    def __str__(self):
        return str(self.id) + ' adjacent: ' + str([x.id for x in self.adjacent])

class Graph:
    def __init__(self):
        self.vert_dict = {}
        self.num_vertices = 0

    def __iter__(self):
        return iter(self.vert_dict.values())

    def add_vertex(self, node):
        self.num_vertices = self.num_vertices + 1
        new_vertex = Vertex(node)
        self.vert_dict[node] = new_vertex
        return new_vertex

    def get_vertex(self, n):
        if n in self.vert_dict:
            return self.vert_dict[n]
        else:
            return None

    def add_edge(self, frm, to, cost = 0):
        if frm not in self.vert_dict:
            self.add_vertex(frm)
        if to not in self.vert_dict:
            self.add_vertex(to)

        self.vert_dict[frm].add_neighbor(self.vert_dict[to], cost)
        self.vert_dict[to].add_neighbor(self.vert_dict[frm], cost)

    def get_vertices(self):
        return self.vert_dict.keys()

    def set_previous(self, current):
        self.previous = current

    def get_previous(self, current):
        return self.previous

def shortest(v, path):
    ''' make shortest path from v.previous'''
    if v.previous:
        path.append(v.previous.get_id())
        shortest(v.previous, path)
    return

import heapq

def dijkstra(aGraph, start, target):
    print '''Dijkstra's shortest path'''
    # Set the distance for the start node to zero 
    start.set_distance(0)

    # Put tuple pair into the priority queue
    unvisited_queue = [(v.get_distance(),v) for v in aGraph]
    heapq.heapify(unvisited_queue)

    while len(unvisited_queue):
        # Pops a vertex with the smallest distance 
        uv = heapq.heappop(unvisited_queue)
        current = uv[1]
        current.set_visited()

        #for next in v.adjacent:
        for next in current.adjacent:
            # if visited, skip
            if next.visited:
                continue
            new_dist = current.get_distance() + current.get_weight(next)
            
            if new_dist < next.get_distance():
                next.set_distance(new_dist)
                next.set_previous(current)
                print 'updated : current = %s next = %s new_dist = %s' \
                        %(current.get_id(), next.get_id(), next.get_distance())
            else:
                print 'not updated : current = %s next = %s new_dist = %s' \
                        %(current.get_id(), next.get_id(), next.get_distance())

        # Rebuild heap
        # 1. Pop every item
        while len(unvisited_queue):
            heapq.heappop(unvisited_queue)
        # 2. Put all vertices not visited into the queue
        unvisited_queue = [(v.get_distance(),v) for v in aGraph if not v.visited]
        heapq.heapify(unvisited_queue)
    
if __name__ == '__main__':

    g = Graph()

    g.add_vertex('a')
    g.add_vertex('b')
    g.add_vertex('c')
    g.add_vertex('d')
    g.add_vertex('e')
    g.add_vertex('f')

    g.add_edge('a', 'b', 7)  
    g.add_edge('a', 'c', 9)
    g.add_edge('a', 'f', 14)
    g.add_edge('b', 'c', 10)
    g.add_edge('b', 'd', 15)
    g.add_edge('c', 'd', 11)
    g.add_edge('c', 'f', 2)
    g.add_edge('d', 'e', 6)
    g.add_edge('e', 'f', 9)

    print 'Graph data:'
    for v in g:
        for w in v.get_connections():
            vid = v.get_id()
            wid = w.get_id()
            print '( %s , %s, %3d)'  % ( vid, wid, v.get_weight(w))

    dijkstra(g, g.get_vertex('a'), g.get_vertex('e')) 

    target = g.get_vertex('e')
    path = [target.get_id()]
    shortest(target, path)
    print 'The shortest path : %s' %(path[::-1])

Output:

Graph data:
( a , f,  14)
( a , c,   9)
( a , b,   7)
( c , d,  11)
( c , f,   2)
( c , a,   9)
( c , b,  10)
( b , d,  15)
( b , a,   7)
( b , c,  10)
( e , d,   6)
( e , f,   9)
( d , c,  11)
( d , e,   6)
( d , b,  15)
( f , a,  14)
( f , c,   2)
( f , e,   9)
Dijkstra's shortest path
updated : current = a next = f new_dist = 14
updated : current = a next = c new_dist = 9
updated : current = a next = b new_dist = 7
updated : current = b next = d new_dist = 22
not updated : current = b next = c new_dist = 9
updated : current = c next = d new_dist = 20
updated : current = c next = f new_dist = 11
updated : current = f next = e new_dist = 20
not updated : current = d next = e new_dist = 20
The shortest path : ['a', 'c', 'f', 'e']



The steps to calculates the path are:

  1. Assign to every node a tentative distance value: set it to zero for our initial node and to infinity for all other nodes. Actually, initialization is done in the Vertex constructor:
    self.distance = sys.maxint
    

    For the starting node, initialization is done in dijkstra()

    print '''Dijkstra's shortest path'''
    # Set the distance for the start node to zero 
    start.set_distance(0)
    
  2. Mark all nodes unvisited. This is also done in the Vertex constructor:
    self.visited = False 
    
  3. Set the initial node as current. Create a list of the unvisited nodes called the unvisited list consisting of all the nodes. We do it using tuple pair, (distance, v)
    def dijkstra(aGraph, start, target):
        print '''Dijkstra's shortest path'''
        # Set the distance for the start node to zero 
        start.set_distance(0)
    
        # Put tuple pair into the priority queue
        unvisited_queue = [(v.get_distance(),v) for v in aGraph]
        heapq.heapify(unvisited_queue)
    
  4. For the current node, consider all of its unvisited neighbors and calculate their tentative distances. Compare the newly calculated tentative distance to the current assigned value and assign the smaller one. For example, if the current node A is marked with a distance of 6, and the edge connecting it with a neighbor B has length 2, then the distance to B (through A) will be 6 + 2 = 8. If B was previously marked with a distance greater than 8 then change it to 8. Otherwise, keep the current value.
        while len(unvisited_queue):
            # Pops a vertex with the smallest distance 
            uv = heapq.heappop(unvisited_queue)
            current = uv[1]
            current.set_visited()
    
            #for next in v.adjacent:
            for next in current.adjacent:
                # if visited, skip
                if next.visited:
                    continue
                new_dist = current.get_distance() + current.get_weight(next)
                
                if new_dist < next.get_distance():
                    next.set_distance(new_dist)
                    next.set_previous(current)
                    print 'updated : current = %s next = %s new_dist = %s' \
                            %(current.get_id(), next.get_id(), next.get_distance())
                else:
                    print 'not updated : current = %s next = %s new_dist = %s' \
                            %(current.get_id(), next.get_id(), next.get_distance())
    
    
  5. When we are done considering all of the neighbors of the current node, mark the current node as visited and remove it from the unvisited set.
        while len(unvisited_queue):
            # Pops a vertex with the smallest distance 
            uv = heapq.heappop(unvisited_queue)
            current = uv[1]
            current.set_visited()
            ...
            # Rebuild heap
            # 1. Pop every item
            while len(unvisited_queue):
                heapq.heappop(unvisited_queue)
            # 2. Put all vertices not visited into the queue
            unvisited_queue = [(v.get_distance(),v) for v in aGraph if not v.visited]
            heapq.heapify(unvisited_queue)
    

    For each new node visit, we rebuild the heap: pop all items, refill the unvisited_queue, and then heapify it.

  6. A visited node will never be checked again. #for next in v.adjacent: for next in current.adjacent: # if visited, skip if next.visited: continue
  7. If there is no unvisited node, the algorithm has finished. Otherwise, we go back to step 4.
  8. Gather predecessors starting from the target node ('e'). In the code, it's done in shortest() function.
    def shortest(v, path):
        ''' make shortest path from v.previous'''
        if v.previous:
            path.append(v.previous.get_id())
            shortest(v.previous, path)
        return
    



more



Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...








Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization

YouTubeMy YouTube channel

Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong







Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Selenium WebDriver

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...


Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong






OpenCV 3 image and video processing with Python



OpenCV 3 with Python

Image - OpenCV BGR : Matplotlib RGB

Basic image operations - pixel access

iPython - Signal Processing with NumPy

Signal Processing with NumPy I - FFT and DFT for sine, square waves, unitpulse, and random signal

Signal Processing with NumPy II - Image Fourier Transform : FFT & DFT

Inverse Fourier Transform of an Image with low pass filter: cv2.idft()

Image Histogram

Video Capture and Switching colorspaces - RGB / HSV

Adaptive Thresholding - Otsu's clustering-based image thresholding

Edge Detection - Sobel and Laplacian Kernels

Canny Edge Detection

Hough Transform - Circles

Watershed Algorithm : Marker-based Segmentation I

Watershed Algorithm : Marker-based Segmentation II

Image noise reduction : Non-local Means denoising algorithm

Image object detection : Face detection using Haar Cascade Classifiers

Image segmentation - Foreground extraction Grabcut algorithm based on graph cuts

Image Reconstruction - Inpainting (Interpolation) - Fast Marching Methods

Video : Mean shift object tracking

Machine Learning : Clustering - K-Means clustering I

Machine Learning : Clustering - K-Means clustering II

Machine Learning : Classification - k-nearest neighbors (k-NN) algorithm




Machine Learning with scikit-learn



scikit-learn installation

scikit-learn : Features and feature extraction - iris dataset

scikit-learn : Machine Learning Quick Preview

scikit-learn : Data Preprocessing I - Missing / Categorical data

scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization

scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests

Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)

scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)

scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis

scikit-learn : Logistic Regression, Overfitting & regularization

scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset

scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset

scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)

scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain

scikit-learn : Decision Tree Learning II - Constructing the Decision Tree

scikit-learn : Random Decision Forests Classification

scikit-learn : Support Vector Machines (SVM)

scikit-learn : Support Vector Machines (SVM) II

Flask with Embedded Machine Learning I : Serializing with pickle and DB setup

Flask with Embedded Machine Learning II : Basic Flask App

Flask with Embedded Machine Learning III : Embedding Classifier

Flask with Embedded Machine Learning IV : Deploy

Flask with Embedded Machine Learning V : Updating the classifier

scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one




Machine learning algorithms and concepts

Batch gradient descent algorithm

Single Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function

Batch gradient descent versus stochastic gradient descent

Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method

Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)

Logistic Regression

VC (Vapnik-Chervonenkis) Dimension and Shatter

Bias-variance tradeoff

Maximum Likelihood Estimation (MLE)

Neural Networks with backpropagation for XOR using one hidden layer

minHash

tf-idf weight

Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)

Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)

Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)

Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)

Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)




Artificial Neural Networks (ANN)

[Note] Sources are available at Github - Jupyter notebook files

1. Introduction

2. Forward Propagation

3. Gradient Descent

4. Backpropagation of Errors

5. Checking gradient

6. Training via BFGS

7. Overfitting & Regularization

8. Deep Learning I : Image Recognition (Image uploading)

9. Deep Learning II : Image Recognition (Image classification)

10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras









Contact

BogoToBogo
contactus@bogotobogo.com

Follow Bogotobogo

About Us

contactus@bogotobogo.com

YouTubeMy YouTube channel
Pacific Ave, San Francisco, CA 94115

Pacific Ave, San Francisco, CA 94115

Copyright © 2024, bogotobogo
Design: Web Master