BogoToBogo
  • Home
  • About
  • Big Data
  • Machine Learning
  • AngularJS
  • Python
  • C++
  • go
  • DevOps
  • Kubernetes
  • Algorithms
  • More...
    • Qt 5
    • Linux
    • FFmpeg
    • Matlab
    • Django 1.8
    • Ruby On Rails
    • HTML5 & CSS

scikit-learn : Features and feature extraction

Scikit-learn_logo.png




Bookmark and Share





bogotobogo.com site search:




Machine Learning 101

Machine Learning 101: General Concepts summarized Machine learning as follows:

  1. Know how to extract features from real-world data in order to perform machine learning tasks.
    Feature extraction involves reducing the amount of resources required to describe a large set of data.
    When performing analysis of complex data one of the major problems stems from the number of variables involved.
    Analysis with a large number of variables generally requires a large amount of memory and computation power, also it may cause a classification algorithm to overfit to training samples and generalize poorly to new samples.
    Feature extraction is a general term for methods of constructing combinations of the variables to get around these problems while still describing the data with sufficient accuracy.
    - Feature extraction - wiki
  2. Know the basic categories of supervised learning, including classification and regression problems.
  3. Know the basic categories of unsupervised learning, including dimensionality reduction and clustering.
  4. Understand the distinction between linearly separable and non-linearly separable data.

"Machine Learning is about building programs with tunable parameters (typically an array of floating point values) that are adjusted automatically so as to improve their behavior by adapting to previously seen data."




bogotobogo.com site search:

Features and feature extraction

The diagram shown below is a typical workflow diagram for using machine learning.

FeatureExtraction.png
  1. Preprocessing - getting data into shape

    Raw data rarely comes in the form and shape that is necessary for the optimal performance of a learning algorithm.

    So, the preprocessing of the data is one of the most crucial steps in any machine learning application. If we take the Iris flower data set in the next section, we could think of the raw data as a series of flower images from which we want to extract meaningful features.

    Useful features could be the color, the hue, the intensity of the flowers, the height, and the flower lengths and widths.

    Some of the selected features may be highly correlated and therefore redundant to a certain degree. In those cases, dimensionality reduction techniques are useful for compressing the features onto a lower dimensional subspace. Reducing the dimensionality of our feature space has the advantage that less storage space is required, and the learning algorithm can run much faster.

  2. Training and selecting a predictive model
  3. Evaluating models and predicting unseen data instances

    After we have selected a model that has been fitted on the training data set, we can use the test data set to estimate how well it performs on this unseen data to estimate the generalization error.

    If we are satisfied with its performance, we can now use this model to predict new, future data.

    It is important to note that the parameters for the previously mentioned procedures such as feature scaling and dimensionality reduction are solely obtained from the training data set, and the same parameters are later reapplied to transform the test data set, as well as any new data samples.

The picture and the description of the process are from "Python Machine Learning by Sebastian Raschka, 2015"





Python packages

The version numbers of the major Python packages that were used throughout this tutorial are listed below:

  1. NumPy 1.9.1
  2. SciPy 0.14.0
  3. scikit-learn 0.15.2
  4. matplotlib 1.4.0
  5. pandas 0.15.2




scikit-learn & numpy

The scikit-learn API combines a user-friendly interface with a highly optimized implementation of several classification algorithms.

The scikit-learn library offers not only a large variety of learning algorithms, but also many convenient functions such as preprocessing data, fine-tuning, and evaluating our models.

Most machine learning algorithms implemented in scikit-learn expect a numpy array as input X that has (n_samples, n_features) shape.

  1. n_samples: The number of samples.
  2. n_features: The number of features or distinct traits that can be used to describe each item in a quantitative manner.




Iris flower data set

iris-data-set.png

Picture credit: Python Machine Learning by Sebastian Raschka, 2015

The data set of this tutorial consists of 50 samples from each of three species of Iris (Iris setosa, Iris virginica and Iris versicolor).

Four features were measured from each sample: the length and the width of the sepals and petals, in centimeters. Based on the combination of these four features, Fisher developed a linear discriminant model to distinguish the species from each other." - Iris flower data set

768px-Anderson_Iris_data_set.png

Picture source - Iris flower data set



FeatureExtraction.png

Picture source - Predictive modeling, supervised machine learning, and pattern classification





Iris data set & scikit-learn

scikit-learn loads data from CSV file into numpy arrays:

>>> from sklearn.datasets import load_iris
>>> iris = load_iris()

The data attribute of the dataset stores the features of each sample flower:

>>> iris.data
array([[ 5.1,  3.5,  1.4,  0.2],
       [ 4.9,  3. ,  1.4,  0.2],
       [ 4.7,  3.2,  1.3,  0.2],
       ...
       [ 6.5,  3. ,  5.2,  2. ],
       [ 6.2,  3.4,  5.4,  2.3],
       [ 5.9,  3. ,  5.1,  1.8]])
>>>
>>> n_samples, n_features = iris.data.shape
>>> n_samples
150
>>> n_features
4
>>> iris.data.shape
(150, 4)

The target attribute of the dataset stores the information about the class of each sample:

>>> len(iris.target)
150
>>> iris.target
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
       2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2])

The target_names attribute stores the names of the classes:

>>> iris.target_names
array(['setosa', 'versicolor', 'virginica'], 
      dtype='|S10')


If we just want a portion of dataset, for example, "Petal length" and "Petal width", we can extract like this:

>>> from sklearn import datasets
>>> import numpy as np
>>> iris = datasets.load_iris()
>>> X = iris.data[:, [2, 3]]
>>> X
array([[ 1.4,  0.2],
       [ 1.4,  0.2],
       [ 1.3,  0.2],
       [ 1.5,  0.2],
...
       [ 5. ,  1.9],
       [ 5.2,  2. ],
       [ 5.4,  2.3],
       [ 5.1,  1.8]])

If we do np.unique(y) to return the different class labels stored in iris. target, we can see Iris flower class names, Iris-Setosa, Iris-Versicolor, and Iris-Virginica, which are stored as integers ( 0 , 1 , 2 ):

>>> y = iris.target
>>> np.unique(y)
array([0, 1, 2])








Machine Learning with scikit-learn



scikit-learn installation

scikit-learn : Features and feature extraction - iris dataset

scikit-learn : Machine Learning Quick Preview

scikit-learn : Data Preprocessing I - Missing / Categorical data

scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization

scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests

Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)

scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)

scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis

scikit-learn : Logistic Regression, Overfitting & regularization

scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset

scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset

scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)

scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain

scikit-learn : Decision Tree Learning II - Constructing the Decision Tree

scikit-learn : Random Decision Forests Classification

scikit-learn : Support Vector Machines (SVM)

scikit-learn : Support Vector Machines (SVM) II

Flask with Embedded Machine Learning I : Serializing with pickle and DB setup

Flask with Embedded Machine Learning II : Basic Flask App

Flask with Embedded Machine Learning III : Embedding Classifier

Flask with Embedded Machine Learning IV : Deploy

Flask with Embedded Machine Learning V : Updating the classifier

scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one




Machine learning algorithms and concepts

Batch gradient descent algorithm

Single Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function

Batch gradient descent versus stochastic gradient descent

Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method

Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)

Logistic Regression

VC (Vapnik-Chervonenkis) Dimension and Shatter

Bias-variance tradeoff

Maximum Likelihood Estimation (MLE)

Neural Networks with backpropagation for XOR using one hidden layer

minHash

tf-idf weight

Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)

Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)

Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)

Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)

Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)




Artificial Neural Networks (ANN)

[Note] Sources are available at Github - Jupyter notebook files

1. Introduction

2. Forward Propagation

3. Gradient Descent

4. Backpropagation of Errors

5. Checking gradient

6. Training via BFGS

7. Overfitting & Regularization

8. Deep Learning I : Image Recognition (Image uploading)

9. Deep Learning II : Image Recognition (Image classification)

10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras








Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization

YouTubeMy YouTube channel

Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong








Machine Learning with scikit-learn



scikit-learn installation

scikit-learn : Features and feature extraction - iris dataset

scikit-learn : Machine Learning Quick Preview

scikit-learn : Data Preprocessing I - Missing / Categorical data)

scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization

scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests

scikit-learn : Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)

scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)

scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis

scikit-learn : Logistic Regression, Overfitting & regularization

scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset

scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset

scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)

scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain

scikit-learn : Decision Tree Learning II - Constructing the Decision Tree

scikit-learn : Random Decision Forests Classification

scikit-learn : k-Nearest Neighbors (k-NN) Algorithm

scikit-learn : Support Vector Machines (SVM)

scikit-learn : Support Vector Machines (SVM) II

Flask with Embedded Machine Learning I : Serializing with pickle and DB setup

Flask with Embedded Machine Learning II : Basic Flask App

Flask with Embedded Machine Learning III : Embedding Classifier

Flask with Embedded Machine Learning IV : Deploy

Flask with Embedded Machine Learning V : Updating the classifier

scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one




Machine learning algorithms

Batch gradient descent algorithm

Single Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function

Batch gradient descent versus stochastic gradient descent (SGD)

Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method

Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)

VC (Vapnik-Chervonenkis) Dimension and Shatter

Bias-variance tradeoff

Logistic Regression

Maximum Likelihood Estimation (MLE)

Neural Networks with backpropagation for XOR using one hidden layer

minHash

tf-idf weight

Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)

Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)

Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)

Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)

Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)




Artificial Neural Networks (ANN)

1. Introduction

2. Forward Propagation

3. Gradient Descent

4. Backpropagation of Errors

5. Checking gradient

6. Training via BFGS

7. Overfitting & Regularization

8 - Deep Learning I : Image Recognition (Image uploading)

9 - Deep Learning II : Image Recognition (Image classification)

10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras




Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong






Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Selenium WebDriver

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...









Contact

BogoToBogo
contactus@bogotobogo.com

Follow Bogotobogo

About Us

contactus@bogotobogo.com

YouTubeMy YouTube channel
Pacific Ave, San Francisco, CA 94115

Pacific Ave, San Francisco, CA 94115

Copyright © 2024, bogotobogo
Design: Web Master