BogoToBogo
  • Home
  • About
  • Big Data
  • Machine Learning
  • AngularJS
  • Python
  • C++
  • go
  • DevOps
  • Kubernetes
  • Algorithms
  • More...
    • Qt 5
    • Linux
    • FFmpeg
    • Matlab
    • Django 1.8
    • Ruby On Rails
    • HTML5 & CSS

Matplotlib, NumPy, SciPy 2020

python_logo




Bookmark and Share





bogotobogo.com site search:

Installation - Numpy, Matplotlib, etc.

Let's start from scratch with Python 2.7.


  1. Install python from http://python.org/download/

  2. Run distribute_setup.py script. Then, we'll have easy_install under Scripts directory.

  3. Install NeworkX package for build/analyzing graphs
        C:\Python27\Scripts>easy_install networkx
      
    We can check if it's really installed:
       C:\Python27\Scripts>python
       >>> import networkx
       >>>
      
  4. Install NumPy
        C:\Python27\Scripts>easy_install numpy
      
    We can test your progress:
        >>> import numpy
        >>> print numpy.__version__
      
    Matplotlib requires numpy version 1.1 or later

  5. Install ipython
        C:\Python27\Scripts>easy_install ipython
      
  6. Install Matplotlib

    1. Go to http://sourceforge.net/projects/matplotlib/files/
    2. Click "Download matplotlib-1.1.0.win32-py2.7.exe (4.2 MB)"

    In my case, since the ease_install for Matplotlib did not work, I directly executed matplotlib-1.1.0.win32-py2.7.exe.

  7. Install SciPy

    1. Go to sourceforge.net

    Again, since the ease_install for SciPy did not work, scipy-0.9.0rc5-win32-superpack-python2.7.exe will be automatically run and install SciPy.





First plot using Matplotlib

Let's import matplotlib's function-based interface:

import matplotlib.pyplot as pyp
x = [0, 2, 4, 6, 8]
y = [0, 3, 3, 7, 0]
pyp.plot(x, y)
pyp.savefig("MyFirstPlot.png")

The pyplot interface is a function-based interface that uses the Matlab-like conventions. However, it does not include the NumPy functions. So, if we want to use NumPy, it must be imported separately.


MyFirstPlot

Actually, there is a good tutorial for beginners.
http://www.ast.uct.ac.za/~sarblyth/pythonGuide/PythonPlottingBeginnersGuide.pdf





Another plot using Matplotlib

Here is another simple Matplotlib code.

import numpy
import pylab

t = numpy.arange(0.0, 1.0+0.01, 0.01)
s = numpy.cos(numpy.pi*4*t)
pylab.plot(t, s)
 
pylab.xlabel('time (s)')
pylab.ylabel('cos(4t)')
pylab.title('Simple cosine')
pylab.grid(True)
pylab.savefig('simple_cosine')

pylab.show()

The last line of code, pylab.show() pops up 2D plot:


Simple2DPlot




Contour plot using Matplotlib
import scipy
import pylab 
import matplotlib.pyplot as plt

x,y = scipy.ogrid[-1.:1.:.01, -1.:1.:.01]
z = x**3-3*x*y**2
pylab.imshow(z, origin='lower', extent=[-1,1,-1,1])
plt.contour(z, origin='lower', extent=[-1,1,-1,1])
pylab.xlabel('x')
pylab.ylabel('y')
pylab.title('Saddle')
pylab.savefig('Saddle')
plt.show()

Saddle


Plot using Matplotlib with csv data input

The following example show the case when x-axis is date string.

import numpy as np
import matplotlib.pyplot as plt
import datetime as DT

data= np.loadtxt('daily_count.csv', delimiter=',', 
         dtype={'names': ('date', 'count'),'formats': ('S10', 'i4')} )

x = [DT.datetime.strptime(key,"%Y-%m-%d") for (key, value) in data ]
y = [value for (key, value) in data]

fig = plt.figure()
ax = fig.add_subplot(111)
ax.grid()

fig.autofmt_xdate()

plt.plot(x,y,'b--o--')
plt.xlabel('Date')
plt.ylabel('Daily Count')
plt.title('Daily Count since February')
plt.show()

DailyCount

The input data is daily_count.csv


Plot using Matplotlib with legend

The following example show the case when we have several columns of data.

import numpy as np
import matplotlib.pyplot as plt
import datetime as dt
import matplotlib.dates as md

data= np.loadtxt('vmstat_7days_without_header.csv', delimiter=',', 
    dtype={'names': ['time', 'mon','tue','wed','thrs','fri','sat','sun'],
           'formats': ['S8','i4','i4','i4','i4','i4','i4','i4']} )

x,y1,y2,y3,y4,y5,y6,y7 = [],[],[],[],[],[],[],[]

for z in data:
# 10 minute span
	if int((z[0].split(':',2))[1]) % 10 == 0:
		xc = dt.datetime.strptime(z[0],"%H:%M:%S")
		x.append(xc)
		y1.append(z[1])
		y2.append(z[2])
		y3.append(z[3])
		y4.append(z[4])
		y5.append(z[5])
		y6.append(z[6])
		y7.append(z[7])

fig = plt.figure()
ax = fig.add_subplot(111)
xfmt = md.DateFormatter('%H')
ax.xaxis.set_major_formatter(xfmt)
ax.grid()

# slanted x-axis tick label
fig.autofmt_xdate()

p1 = plt.plot(x,y1,'rs')
p2 = plt.plot(x,y2,'gp')
p3 = plt.plot(x,y3,'b*')
p4 = plt.plot(x,y4,'ch')
p5 = plt.plot(x,y5,'mp')
p6 = plt.plot(x,y6,'ys')
p7 = plt.plot(x,y7,'kD')

plt.ylabel("CPU Idle [%]")
plt.xlabel("Time of the day[hr]")

plt.ylim(84.0, 101)

plt.title("CPU Load for 7 days (10min interval), Idling Time, from vmstat command")

#let python select the best position for legend
plt.legend([p1[0],p2[0],p3[0],p4[0],p5[0],p6[0],p7[0]], 
          ['Mon','Tue','Wed','Thu','Fri','Sat','Sun'], 'best', numpoints=1)

plt.show()

CPU_Load

The input data used for the above example is vmstat_7days_without_header.csv


Plot using Basemap

Unlike the other examples above, fore this one, I used Python 3.3 just because of my new computer is AMD64. So, I needed new packages:

  1. NumPy for 3.3
  2. Matplotlib for 3.3
  3. mpl_toolkits.basemap for 3.3

The code used is virtually the same one as in the Plotting data on a map.

from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import numpy as np
# set up orthographic map projection with
# perspective of satellite looking down at 38N, 127E.
# use low resolution coastlines.
map = Basemap(projection='ortho',lat_0=38,lon_0=127,resolution='l')
# draw coastlines, country boundaries, fill continents.
map.drawcoastlines(linewidth=0.25)
map.drawcountries(linewidth=0.25)
map.fillcontinents(color='coral',lake_color='aqua')
# draw the edge of the map projection region (the projection limb)
map.drawmapboundary(fill_color='aqua')
# draw lat/lon grid lines every 15 degrees.
map.drawmeridians(np.arange(0,360,15))
map.drawparallels(np.arange(-90,90,15))
# make up some data on a regular lat/lon grid.
nlats = 73; nlons = 145; delta = 2.*np.pi/(nlons-1)
lats = (0.5*np.pi-delta*np.indices((nlats,nlons))[0,:,:])
lons = (delta*np.indices((nlats,nlons))[1,:,:])
wave = 0.75*(np.sin(2.*lats)**8*np.cos(4.*lons))
mean = 0.5*np.cos(2.*lats)*((np.sin(2.*lats))**2 + 2.)
# compute native map projection coordinates of lat/lon grid.
x, y = map(lons*180./np.pi, lats*180./np.pi)
# contour data over the map.
cs = map.contour(x,y,wave+mean,15,linewidths=1.5)
plt.title('contours with continent background')
plt.show()

Contours.png



Spherical

This was done as a preliminary step for my small project, "Uniform distribution of points on the surface of a sphere".

I removed axis, and the color display will be used to indicate the density of the points and it's not implemented yet. The calculation was done in C++, and this example was used to just for checking purpose. The points were calculated algebraically, 50(θ) x 50(φ).

from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_aspect("equal")
ax.view_init(elev=0, azim=90)

u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)

x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))

ax.plot_surface(x, y, z,  rstride=2, cstride=2, color='b', alpha = 0.3, linewidth = 0, cmap=cm.jet)

data = np.loadtxt(r'C:\matplotlib_test\sample.csv', delimiter=',',dtype=None)
xx, yy, zz = [], [], []
for d in data:
	xx.append(d[0])
	yy.append(d[1])
	zz.append(d[2])

ax.scatter(xx, yy, zz, color="k", s=1)

plt.axis('off')
plt.show()
Algebraic_50_50.png

We see that the points are certainly not distributed evenly. They are much more dense at the poles. This is because the mapping from spherical to Cartesian coordinates does not preserve area. That is, the spherical space is pinched and compressed at the poles by the mapping.





Distributing Points

The followings sampling used random numbers. The incorrect ones used normal random numbers while the correct (at least better) ones reflected the dependency of $\phi$.

$$P(\phi) = \frac{\sin \phi}{2}$$

In other words, by using CDF (Cumulative Distribution Function),
we get the correct random variable for $\phi = \cos^{-1}(2v-1).$

Sampling points = 5,000 and Matplotlib were used for the plots.

For C++ code, please visit Algorithms: Distributing Points.


Incorrect

Incorrect_Side.png
Incorrect_Top.png

Correct

Correct_Side.png
Correct_Top.png
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_aspect("equal")

# top: elev=90, side: elev=0
ax.view_init(elev=0, azim=0)

u = np.linspace(0, 2 * np.pi, 120)
v = np.linspace(0, np.pi, 60)

x = np.outer(np.cos(u), np.sin(v))
y = np.outer(np.sin(u), np.sin(v))
z = np.outer(np.ones(np.size(u)), np.cos(v))

#ax.plot_surface(x, y, z,  rstride=2, cstride=2, color='b', #alpha = 0.3, linewidth = 0, cmap=cm.jet)
ax.plot_surface(x, y, z,  rstride=1, cstride=1, color='c', alpha = 0.3, linewidth = 0)

data = np.loadtxt(r'C:\TEST2\CDF\first.csv', delimiter=',',dtype=None)

xx, yy, zz = [], [], []
for d in data:
	xx.append(d[0])
	yy.append(d[1])
	zz.append(d[2])

ax.scatter(xx,yy,zz,color="k",s=1)

plt.title('Correctly distributed - Side View')
plt.axis('off')
plt.show()




Vector plot

Here is a sample code of vectors:

import numpy as np
import matplotlib.pyplot as plt
soa =np.array( [ [0,0,1,0], [0,0,1,1],[0,0,0,1], [0,0,-1,1]]) 
X,Y,U,V = zip(*soa)
plt.figure()
ax = plt.gca()
ax.quiver(X,Y,U,V,angles='xy',scale_units='xy',scale=1)
ax.set_xlim([-2,2])
ax.set_ylim([-1,2])
plt.text(1.0, 0.1, r'$\vec a$', fontsize=24, color='red', fontweight='bold')
plt.text(1.1, 1.1, r'$\vec b$', fontsize=24, color='green', fontweight='bold')
plt.text(0.0, 1.1, r'$\vec c$', fontsize=24, color='blue', fontweight='bold')
plt.text(-1.1, 1.1, r'$\vec d$', fontsize=24, color='orange', fontweight='bold')
plt.draw()
plt.show()

Output:


vector-plot.png




References

data_analysis_with_open_source_tools.png Data Analysis with Open Source Tools by Philipp K. Janert (Nov 25, 2010)

Datasets and codes are available at http://examples.oreilly.com/9780596802363/


collective_intelligence Programming Collective Intelligence by Toby Segaran.




Computer_Vision_with_Python.png

Programming Computer Vision with Python - March 2012 (pdf) or get it from http://programmingcomputervision.com/






Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...







Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization

YouTubeMy YouTube channel

Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong







Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Selenium WebDriver

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...


Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong






OpenCV 3 image and video processing with Python



OpenCV 3 with Python

Image - OpenCV BGR : Matplotlib RGB

Basic image operations - pixel access

iPython - Signal Processing with NumPy

Signal Processing with NumPy I - FFT and DFT for sine, square waves, unitpulse, and random signal

Signal Processing with NumPy II - Image Fourier Transform : FFT & DFT

Inverse Fourier Transform of an Image with low pass filter: cv2.idft()

Image Histogram

Video Capture and Switching colorspaces - RGB / HSV

Adaptive Thresholding - Otsu's clustering-based image thresholding

Edge Detection - Sobel and Laplacian Kernels

Canny Edge Detection

Hough Transform - Circles

Watershed Algorithm : Marker-based Segmentation I

Watershed Algorithm : Marker-based Segmentation II

Image noise reduction : Non-local Means denoising algorithm

Image object detection : Face detection using Haar Cascade Classifiers

Image segmentation - Foreground extraction Grabcut algorithm based on graph cuts

Image Reconstruction - Inpainting (Interpolation) - Fast Marching Methods

Video : Mean shift object tracking

Machine Learning : Clustering - K-Means clustering I

Machine Learning : Clustering - K-Means clustering II

Machine Learning : Classification - k-nearest neighbors (k-NN) algorithm




Machine Learning with scikit-learn



scikit-learn installation

scikit-learn : Features and feature extraction - iris dataset

scikit-learn : Machine Learning Quick Preview

scikit-learn : Data Preprocessing I - Missing / Categorical data

scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization

scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests

Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)

scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)

scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis

scikit-learn : Logistic Regression, Overfitting & regularization

scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset

scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset

scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)

scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain

scikit-learn : Decision Tree Learning II - Constructing the Decision Tree

scikit-learn : Random Decision Forests Classification

scikit-learn : Support Vector Machines (SVM)

scikit-learn : Support Vector Machines (SVM) II

Flask with Embedded Machine Learning I : Serializing with pickle and DB setup

Flask with Embedded Machine Learning II : Basic Flask App

Flask with Embedded Machine Learning III : Embedding Classifier

Flask with Embedded Machine Learning IV : Deploy

Flask with Embedded Machine Learning V : Updating the classifier

scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one




Machine learning algorithms and concepts

Batch gradient descent algorithm

Single Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function

Batch gradient descent versus stochastic gradient descent

Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method

Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)

Logistic Regression

VC (Vapnik-Chervonenkis) Dimension and Shatter

Bias-variance tradeoff

Maximum Likelihood Estimation (MLE)

Neural Networks with backpropagation for XOR using one hidden layer

minHash

tf-idf weight

Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)

Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)

Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)

Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)

Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)




Artificial Neural Networks (ANN)

[Note] Sources are available at Github - Jupyter notebook files

1. Introduction

2. Forward Propagation

3. Gradient Descent

4. Backpropagation of Errors

5. Checking gradient

6. Training via BFGS

7. Overfitting & Regularization

8. Deep Learning I : Image Recognition (Image uploading)

9. Deep Learning II : Image Recognition (Image classification)

10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras









Contact

BogoToBogo
contactus@bogotobogo.com

Follow Bogotobogo

About Us

contactus@bogotobogo.com

YouTubeMy YouTube channel
Pacific Ave, San Francisco, CA 94115

Pacific Ave, San Francisco, CA 94115

Copyright © 2024, bogotobogo
Design: Web Master