BogoToBogo
  • Home
  • About
  • Big Data
  • Machine Learning
  • AngularJS
  • Python
  • C++
  • go
  • DevOps
  • Kubernetes
  • Algorithms
  • More...
    • Qt 5
    • Linux
    • FFmpeg
    • Matlab
    • Django 1.8
    • Ruby On Rails
    • HTML5 & CSS

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

IPython-Icon.png Jupyter-Icon.png




Bookmark and Share





bogotobogo.com site search:




Jupyter (Julia, Python and R) Install via Anaconda

To install Jupyter, in this section, we'll install Jupyter via Anaconda as recommended by Jupyter Doc.

To install Jupyter via traditional pip, skip this section, and go to Ipython and Jupyter Notebook Install via pip.

Anaconda conveniently installs Python, the Jupyter Notebook, and other commonly used packages for scientific computing and data science.

We'll install "Anaconda for Linux" for Python 3.5:

$ bash Anaconda3-2.5.0-Linux-x86_64.sh
...
installing: conda-env-2.4.5-py35_0 ...
Python 3.5.1 :: Continuum Analytics, Inc.
creating default environment...
installation finished.
Do you wish the installer to prepend the Anaconda3 install location
to PATH in your /home/k/.bashrc ? [yes|no]

Since it added a new path:

# added by Anaconda3 2.5.0 installer
export PATH="/home/k/anaconda3/bin:$PATH"

we need to update our shell env:

$ source ~/.bashrc

and then using Anaconda and conda to install Jupyter:

$ conda install jupyter

Now that we have installed Jupyter Notebook, we are ready to run the notebook.






Ipython and Jupyter Notebook Install via pip

If Ipython and Jupyter Notebook are already installed, skip this section.

Install Ipython:

$ sudo apt-get -y install ipython ipython-notebook

Install Jupyter:

$ sudo -H pip install jupyter

Depending on the pip version on our Ubuntu apt-get repository, we may get the following error:

You are using pip version 8.1.1, however version 8.1.2 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.

Then, we may want to upgrade pip to the latest version:

$ sudo -H pip install --upgrade pip

We can re-try installing Jupyter:

$ sudo -H pip install jupyter




Running Jupyter

We can start the notebook server from the command line:

$ jupyter notebook

This will print some information about the notebook server in terminal, including the URL of the web application (by default, http://127.0.0.1:8888). It will then open default web browser to this URL.


Localhost8888.png

"When the notebook opens, you will see the notebook dashboard, which will show a list of the notebooks, files, and subdirectories in the directory where the notebook server was started (as seen in the next section, below). Most of the time, you will want to start a notebook server in the highest directory in your filesystem where notebooks can be found. Often this will be your home directory."
- Running the Notebook.


The Notebook is most convenient when we start a complex analysis project that will involve a substantial amount of interactive experimentation with our code.

Other common use-cases include keeping track of our interactive session (like a lab notebook), or writing technical documents that involve code, equations, and figures.

To close the Notebook server, go to the OS terminal where we launched the server from, and press Ctrl + C. We may need to confirm with y.




Port setting

By default, the notebook server starts on port 8888. If port 8888 is unavailable, the notebook server searches the next available port. We can also specify the port manually:

$ jupyter notebook --port 9999




The Notebook user interface

To create a new notebook, click on the New button, and select Notebook (Python 3).

A new browser tab opens and shows the Notebook interface as follows:

Python3-Notebook.png

Here are the main components of the interface, from top to bottom:

  1. The notebook name (Untitled in the picture), which we can change by clicking on it. This is also the name of the .ipynb file.
  2. The Menu bar (File, Edit, etc.) gives us access to several actions pertaining to either the notebook or the kernel.
  3. To the right of the menu bar is the Kernel name (Python 3). We can change the kernel language of our notebook from the Kernel menu.
  4. The Toolbar contains icons for common actions. In particular, the dropdown menu showing Code lets us change the type of a cell.




Jupyter configuration

To create a file jupyter_notebook_config.py in ~/.jupyter:

$ jupyter notebook --generate-config

The file already has a line starting with # c.NotebookApp.notebook_dir=u''. So, all we need to do is to uncomment this line and change the value to our desired location:

c.NotebookApp.notebook_dir=u'/home/k/TEST/NeuralNetworks'




A sample

As the first example, we'll draw vectors using Matplotlib:

Ln4.png

Note that we used %matplotlib inline to draw directly to our Notebook.





Publishing it to Github

I'm not aware of publishing the Notebook file directly to Github from Notebook. But at least we can do it as we do with our normal files as long as we save it as Notebook file format, ~/.local/bin/VectorPlot.ipynb or /home/TEST/NeuralNetworks/VectorPlot.ipynb if we have a configuration setting as "c.NotebookApp.notebook_dir = /home/k/TEST/NeuralNetworks" in ~/.jupyter/jupyter_notebook_config.py file.

So, the drawing and the script is available at GitHub:
https://github.com/PyGoogle/IPython-Jupyter/blob/master/VectorPlot.ipynb





Shutting down the Jupyter Notebook App

Just closing the browser (or the tab) will not close the Jupyter Notebook App.

To completely shut it down we need to close the associated terminal.






IPython: Jupyter

  1. iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github
  2. iPython and Jupyter Notebook with Embedded D3.js







Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization

YouTubeMy YouTube channel

Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong







Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Selenium WebDriver

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...


Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong






OpenCV 3 image and video processing with Python



OpenCV 3 with Python

Image - OpenCV BGR : Matplotlib RGB

Basic image operations - pixel access

iPython - Signal Processing with NumPy

Signal Processing with NumPy I - FFT and DFT for sine, square waves, unitpulse, and random signal

Signal Processing with NumPy II - Image Fourier Transform : FFT & DFT

Inverse Fourier Transform of an Image with low pass filter: cv2.idft()

Image Histogram

Video Capture and Switching colorspaces - RGB / HSV

Adaptive Thresholding - Otsu's clustering-based image thresholding

Edge Detection - Sobel and Laplacian Kernels

Canny Edge Detection

Hough Transform - Circles

Watershed Algorithm : Marker-based Segmentation I

Watershed Algorithm : Marker-based Segmentation II

Image noise reduction : Non-local Means denoising algorithm

Image object detection : Face detection using Haar Cascade Classifiers

Image segmentation - Foreground extraction Grabcut algorithm based on graph cuts

Image Reconstruction - Inpainting (Interpolation) - Fast Marching Methods

Video : Mean shift object tracking

Machine Learning : Clustering - K-Means clustering I

Machine Learning : Clustering - K-Means clustering II

Machine Learning : Classification - k-nearest neighbors (k-NN) algorithm




Machine Learning with scikit-learn



scikit-learn installation

scikit-learn : Features and feature extraction - iris dataset

scikit-learn : Machine Learning Quick Preview

scikit-learn : Data Preprocessing I - Missing / Categorical data

scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization

scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests

Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)

scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)

scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis

scikit-learn : Logistic Regression, Overfitting & regularization

scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset

scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset

scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)

scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain

scikit-learn : Decision Tree Learning II - Constructing the Decision Tree

scikit-learn : Random Decision Forests Classification

scikit-learn : Support Vector Machines (SVM)

scikit-learn : Support Vector Machines (SVM) II

Flask with Embedded Machine Learning I : Serializing with pickle and DB setup

Flask with Embedded Machine Learning II : Basic Flask App

Flask with Embedded Machine Learning III : Embedding Classifier

Flask with Embedded Machine Learning IV : Deploy

Flask with Embedded Machine Learning V : Updating the classifier

scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one




Machine learning algorithms and concepts

Batch gradient descent algorithm

Single Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function

Batch gradient descent versus stochastic gradient descent

Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method

Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)

Logistic Regression

VC (Vapnik-Chervonenkis) Dimension and Shatter

Bias-variance tradeoff

Maximum Likelihood Estimation (MLE)

Neural Networks with backpropagation for XOR using one hidden layer

minHash

tf-idf weight

Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)

Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)

Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)

Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)

Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)




Artificial Neural Networks (ANN)

[Note] Sources are available at Github - Jupyter notebook files

1. Introduction

2. Forward Propagation

3. Gradient Descent

4. Backpropagation of Errors

5. Checking gradient

6. Training via BFGS

7. Overfitting & Regularization

8. Deep Learning I : Image Recognition (Image uploading)

9. Deep Learning II : Image Recognition (Image classification)

10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras









Contact

BogoToBogo
contactus@bogotobogo.com

Follow Bogotobogo

About Us

contactus@bogotobogo.com

YouTubeMy YouTube channel
Pacific Ave, San Francisco, CA 94115

Pacific Ave, San Francisco, CA 94115

Copyright © 2024, bogotobogo
Design: Web Master