BogoToBogo
  • Home
  • About
  • Big Data
  • Machine Learning
  • AngularJS
  • Python
  • C++
  • go
  • DevOps
  • Kubernetes
  • Algorithms
  • More...
    • Qt 5
    • Linux
    • FFmpeg
    • Matlab
    • Django 1.8
    • Ruby On Rails
    • HTML5 & CSS

SQLite 3 B. Select/Update/Delete - 2020

python_logo




Bookmark and Share





bogotobogo.com site search:

Select - 1. Retrieving Data

This chapter is a continuation from Connecting to DB, create/drop table, and insert data into a table.

In the previous chapter, we had the following output when we used the sqlite shell command line:

$ sqlite3 test.db

sqlite> .tables
books

sqlite> .mode column
sqlite> .headers on
sqlite> SELECT * FROM books;
id          title            author      price       year       
----------  ---------------  ----------  ----------  -----------
1           Learning Python  Mark Lutz   $36.19      Jul 6, 2013
2           Two Scoops of D  Daniel Gre  $34.68      Feb 1, 2014
3           Python Cookbook  David Beaz  $30.29      May 29, 201
4           The Quick Pytho  Naomi R. C  $16.39      Jan 15, 201
5           Python Testing   David Sale  $38.20      Sep 2, 2014
sqlite> 

To retrieve data, we need to execute the query against the cursor object and then use fetchone() to retrieve a single row or fetchall() to retrieve all the rows.

>>> cursor.execute('''SELECT title, author, price FROM books''')
<sqlite3.Cursor object at 0x7f1d2717d650>

>>> book1 = cursor.fetchone()
>>> print book1
(u'Learning Python', u'Mark Lutz', u'$36.19')
>>> print(book1[0])
Learning Python

>>> all_cols = cursor.fetchall()

>>> print all_cols
[(u'Two Scoops of Django: Best Practices For Django 1.6', u'Daniel Greenfeld', u'$34.68'), (u'Python Cookbook', u'David Beazley', u'$30.29'), (u'The Quick Python Book', u'Naomi R. Ceder', u'$16.39'), (u'Python Testing', u'David Sale', u'$38.20')]

>>> for col in all_cols:
...     print('{0} : {1}, {2}'.format(col[0], col[1], col[2]))
... 
Two Scoops of Django: Best Practices For Django 1.6 : Daniel Greenfeld, $34.68
Python Cookbook : David Beazley, $30.29
The Quick Python Book : Naomi R. Ceder, $16.39
Python Testing : David Sale, $38.20

The cursor object works as an iterator, invoking fetchall() automatically:

>>> cursor.execute('''SELECT title, author, price, year FROM books''')
<sqlite3.Cursor object at 0x7f1d2717d650>
>>> for col in cursor:
...     # col[0] returns the first column in the query (title), col[1] returns author column.
...     print('{0} : {1}, {2}, {3}'.format(col[0], col[1], col[2], col[3]))
... 
Learning Python : Mark Lutz, $36.19, Jul 6, 2013
Two Scoops of Django: Best Practices For Django 1.6 : Daniel Greenfeld, $34.68, Feb 1, 2014
Python Cookbook : David Beazley, $30.29, May 29, 2013
The Quick Python Book : Naomi R. Ceder, $16.39, Jan 15, 2010
Python Testing : David Sale, $38.20, Sep 2, 2014



Select - 2. Retrieving Data with "?"

We can use the ? placeholder to retrieve data with conditions:

>>> book_id = 3
>>> cursor.execute('''SELECT title, author, price FROM books WHERE id=?''',(book_id,))
<sqlite3.Cursor object at 0x7f1d2717d650>
>>> book = cursor.fetchone()
>>> print(book)
(u'Python Cookbook', u'David Beazley', u'$30.29')



UPDATE Data

Now, we want to update data in the table. Let's switch the price of the 4th book (id = 4).

>>> newPrice = '$19.99'
>>> book_id = 4
>>> cursor.execute('''UPDATE books SET price = ? WHERE id = ?''', (newPrice, book_id))
<sqlite3.Cursor object at 0x7f1d2717d650>

We can check if the price of the 4th (book_id = 4) book has been updated from $16.39 to $19.99:

>>> cursor.execute('''SELECT title, author, price FROM books''')
<sqlite3.Cursor object at 0x7f1d2717d650>
>>> all_books = cursor.fetchall()
>>> print(all_books)
[(u'Learning Python', u'Mark Lutz', u'$36.19'), (u'Two Scoops of Django: Best Practices For Django 1.6', u'Daniel Greenfeld', u'$34.68'), (u'Python Cookbook', u'David Beazley', u'$30.29'), (u'The Quick Python Book', u'Naomi R. Ceder', u'$19.99'), (u'Python Testing', u'David Sale', u'$38.20')]



DELETE data
>>> delete_book_id = 5
>>> cursor.execute('''DELETE FROM books WHERE id = ?''', (delete_book_id,))
<sqlite3.Cursor object at 0x7f1d2717d650>
>>> db.commit()

Let's check the last boot (id = 5) is gone:

>>> cursor.execute('''SELECT title, author, price FROM books''')
<sqlite3.Cursor object at 0x7f1d2717d650>
>>> print(cursor.fetchall())
[(u'Learning Python', u'Mark Lutz', u'$36.19'), (u'Two Scoops of Django: Best Practices For Django 1.6', u'Daniel Greenfeld', u'$34.68'), (u'Python Cookbook', u'David Beazley', u'$30.29'), (u'The Quick Python Book', u'Naomi R. Ceder', u'$19.99')]

Yes, it's not there anymore.





more



Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...








Ph.D. / Golden Gate Ave, San Francisco / Seoul National Univ / Carnegie Mellon / UC Berkeley / DevOps / Deep Learning / Visualization

YouTubeMy YouTube channel

Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong







Python tutorial



Python Home

Introduction

Running Python Programs (os, sys, import)

Modules and IDLE (Import, Reload, exec)

Object Types - Numbers, Strings, and None

Strings - Escape Sequence, Raw String, and Slicing

Strings - Methods

Formatting Strings - expressions and method calls

Files and os.path

Traversing directories recursively

Subprocess Module

Regular Expressions with Python

Regular Expressions Cheat Sheet

Object Types - Lists

Object Types - Dictionaries and Tuples

Functions def, *args, **kargs

Functions lambda

Built-in Functions

map, filter, and reduce

Decorators

List Comprehension

Sets (union/intersection) and itertools - Jaccard coefficient and shingling to check plagiarism

Hashing (Hash tables and hashlib)

Dictionary Comprehension with zip

The yield keyword

Generator Functions and Expressions

generator.send() method

Iterators

Classes and Instances (__init__, __call__, etc.)

if__name__ == '__main__'

argparse

Exceptions

@static method vs class method

Private attributes and private methods

bits, bytes, bitstring, and constBitStream

json.dump(s) and json.load(s)

Python Object Serialization - pickle and json

Python Object Serialization - yaml and json

Priority queue and heap queue data structure

Graph data structure

Dijkstra's shortest path algorithm

Prim's spanning tree algorithm

Closure

Functional programming in Python

Remote running a local file using ssh

SQLite 3 - A. Connecting to DB, create/drop table, and insert data into a table

SQLite 3 - B. Selecting, updating and deleting data

MongoDB with PyMongo I - Installing MongoDB ...

Python HTTP Web Services - urllib, httplib2

Web scraping with Selenium for checking domain availability

REST API : Http Requests for Humans with Flask

Blog app with Tornado

Multithreading ...

Python Network Programming I - Basic Server / Client : A Basics

Python Network Programming I - Basic Server / Client : B File Transfer

Python Network Programming II - Chat Server / Client

Python Network Programming III - Echo Server using socketserver network framework

Python Network Programming IV - Asynchronous Request Handling : ThreadingMixIn and ForkingMixIn

Python Coding Questions I

Python Coding Questions II

Python Coding Questions III

Python Coding Questions IV

Python Coding Questions V

Python Coding Questions VI

Python Coding Questions VII

Python Coding Questions VIII

Python Coding Questions IX

Python Coding Questions X

Image processing with Python image library Pillow

Python and C++ with SIP

PyDev with Eclipse

Matplotlib

Redis with Python

NumPy array basics A

NumPy Matrix and Linear Algebra

Pandas with NumPy and Matplotlib

Celluar Automata

Batch gradient descent algorithm

Longest Common Substring Algorithm

Python Unit Test - TDD using unittest.TestCase class

Simple tool - Google page ranking by keywords

Google App Hello World

Google App webapp2 and WSGI

Uploading Google App Hello World

Python 2 vs Python 3

virtualenv and virtualenvwrapper

Uploading a big file to AWS S3 using boto module

Scheduled stopping and starting an AWS instance

Cloudera CDH5 - Scheduled stopping and starting services

Removing Cloud Files - Rackspace API with curl and subprocess

Checking if a process is running/hanging and stop/run a scheduled task on Windows

Apache Spark 1.3 with PySpark (Spark Python API) Shell

Apache Spark 1.2 Streaming

bottle 0.12.7 - Fast and simple WSGI-micro framework for small web-applications ...

Flask app with Apache WSGI on Ubuntu14/CentOS7 ...

Selenium WebDriver

Fabric - streamlining the use of SSH for application deployment

Ansible Quick Preview - Setting up web servers with Nginx, configure enviroments, and deploy an App

Neural Networks with backpropagation for XOR using one hidden layer

NLP - NLTK (Natural Language Toolkit) ...

RabbitMQ(Message broker server) and Celery(Task queue) ...

OpenCV3 and Matplotlib ...

Simple tool - Concatenating slides using FFmpeg ...

iPython - Signal Processing with NumPy

iPython and Jupyter - Install Jupyter, iPython Notebook, drawing with Matplotlib, and publishing it to Github

iPython and Jupyter Notebook with Embedded D3.js

Downloading YouTube videos using youtube-dl embedded with Python

Machine Learning : scikit-learn ...

Django 1.6/1.8 Web Framework ...


Sponsor Open Source development activities and free contents for everyone.

Thank you.

- K Hong






OpenCV 3 image and video processing with Python



OpenCV 3 with Python

Image - OpenCV BGR : Matplotlib RGB

Basic image operations - pixel access

iPython - Signal Processing with NumPy

Signal Processing with NumPy I - FFT and DFT for sine, square waves, unitpulse, and random signal

Signal Processing with NumPy II - Image Fourier Transform : FFT & DFT

Inverse Fourier Transform of an Image with low pass filter: cv2.idft()

Image Histogram

Video Capture and Switching colorspaces - RGB / HSV

Adaptive Thresholding - Otsu's clustering-based image thresholding

Edge Detection - Sobel and Laplacian Kernels

Canny Edge Detection

Hough Transform - Circles

Watershed Algorithm : Marker-based Segmentation I

Watershed Algorithm : Marker-based Segmentation II

Image noise reduction : Non-local Means denoising algorithm

Image object detection : Face detection using Haar Cascade Classifiers

Image segmentation - Foreground extraction Grabcut algorithm based on graph cuts

Image Reconstruction - Inpainting (Interpolation) - Fast Marching Methods

Video : Mean shift object tracking

Machine Learning : Clustering - K-Means clustering I

Machine Learning : Clustering - K-Means clustering II

Machine Learning : Classification - k-nearest neighbors (k-NN) algorithm




Machine Learning with scikit-learn



scikit-learn installation

scikit-learn : Features and feature extraction - iris dataset

scikit-learn : Machine Learning Quick Preview

scikit-learn : Data Preprocessing I - Missing / Categorical data

scikit-learn : Data Preprocessing II - Partitioning a dataset / Feature scaling / Feature Selection / Regularization

scikit-learn : Data Preprocessing III - Dimensionality reduction vis Sequential feature selection / Assessing feature importance via random forests

Data Compression via Dimensionality Reduction I - Principal component analysis (PCA)

scikit-learn : Data Compression via Dimensionality Reduction II - Linear Discriminant Analysis (LDA)

scikit-learn : Data Compression via Dimensionality Reduction III - Nonlinear mappings via kernel principal component (KPCA) analysis

scikit-learn : Logistic Regression, Overfitting & regularization

scikit-learn : Supervised Learning & Unsupervised Learning - e.g. Unsupervised PCA dimensionality reduction with iris dataset

scikit-learn : Unsupervised_Learning - KMeans clustering with iris dataset

scikit-learn : Linearly Separable Data - Linear Model & (Gaussian) radial basis function kernel (RBF kernel)

scikit-learn : Decision Tree Learning I - Entropy, Gini, and Information Gain

scikit-learn : Decision Tree Learning II - Constructing the Decision Tree

scikit-learn : Random Decision Forests Classification

scikit-learn : Support Vector Machines (SVM)

scikit-learn : Support Vector Machines (SVM) II

Flask with Embedded Machine Learning I : Serializing with pickle and DB setup

Flask with Embedded Machine Learning II : Basic Flask App

Flask with Embedded Machine Learning III : Embedding Classifier

Flask with Embedded Machine Learning IV : Deploy

Flask with Embedded Machine Learning V : Updating the classifier

scikit-learn : Sample of a spam comment filter using SVM - classifying a good one or a bad one




Machine learning algorithms and concepts

Batch gradient descent algorithm

Single Layer Neural Network - Perceptron model on the Iris dataset using Heaviside step activation function

Batch gradient descent versus stochastic gradient descent

Single Layer Neural Network - Adaptive Linear Neuron using linear (identity) activation function with batch gradient descent method

Single Layer Neural Network : Adaptive Linear Neuron using linear (identity) activation function with stochastic gradient descent (SGD)

Logistic Regression

VC (Vapnik-Chervonenkis) Dimension and Shatter

Bias-variance tradeoff

Maximum Likelihood Estimation (MLE)

Neural Networks with backpropagation for XOR using one hidden layer

minHash

tf-idf weight

Natural Language Processing (NLP): Sentiment Analysis I (IMDb & bag-of-words)

Natural Language Processing (NLP): Sentiment Analysis II (tokenization, stemming, and stop words)

Natural Language Processing (NLP): Sentiment Analysis III (training & cross validation)

Natural Language Processing (NLP): Sentiment Analysis IV (out-of-core)

Locality-Sensitive Hashing (LSH) using Cosine Distance (Cosine Similarity)




Artificial Neural Networks (ANN)

[Note] Sources are available at Github - Jupyter notebook files

1. Introduction

2. Forward Propagation

3. Gradient Descent

4. Backpropagation of Errors

5. Checking gradient

6. Training via BFGS

7. Overfitting & Regularization

8. Deep Learning I : Image Recognition (Image uploading)

9. Deep Learning II : Image Recognition (Image classification)

10 - Deep Learning III : Deep Learning III : Theano, TensorFlow, and Keras









Contact

BogoToBogo
contactus@bogotobogo.com

Follow Bogotobogo

About Us

contactus@bogotobogo.com

YouTubeMy YouTube channel
Pacific Ave, San Francisco, CA 94115

Pacific Ave, San Francisco, CA 94115

Copyright © 2024, bogotobogo
Design: Web Master